Highest

Selection Ratio

27 Jan. Shift -1, JEE Main Paper

Questions \& Solutions (Memory Based)

Piprali Road, SIKAR 8875023 163, 9928527788

PHYSICS

SECTION-A

1. Which among the following is forward biased:
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Basic theory.
2. A uniform and homogeneous rod has resistance R. If rod is cut into 5 equal parts and connected in parallel find equivalent resistance ?

Ans. $\frac{\mathrm{R}}{25}$
Sol.

$\Rightarrow \quad \frac{\mathrm{R}}{25}$ Answer
3. Acceleration due to earth on the surface is g_{0}. If mass of earth remains same but radius is half, then find the acceleration on the surface for new system :
(1) $\frac{g_{0}}{2}$
(2) g_{0}
(3) $2 g_{0}$
(4) $4 g_{0}$

Ans. (D)
Sol. $\mathrm{g}_{0}=\frac{\mathrm{Gm}}{\mathrm{R}^{2}}$

$$
\mathrm{g}=\frac{\mathrm{Gm}}{(\mathrm{R} / 2)^{2}}=\frac{4 \mathrm{Gm}}{\mathrm{R}^{2}}=4 \mathrm{~g}_{0}
$$

4. Find moment of inertia about an axis passing though one corner and perpendicular to the plane.

Ans. $4 \mathrm{ma}^{2}$
Sol. $\quad \mathrm{I}=\mathrm{ma}^{2}+\mathrm{ma}^{2}+\mathrm{m}(\sqrt{2} \mathrm{a})^{2}+0=4 \mathrm{ma}^{2}$
5. Two particles having mass $4 \mathrm{~g} \& 25 \mathrm{~g}$ have same kinetic energy. Find ratio of their momentum?
(1) $\frac{2}{5}$
(2) $\frac{2}{3}$
(3) $\frac{4}{5}$
(4) $\frac{3}{4}$

Ans. (1)
Sol. $\quad K E_{1}=K_{2}$
$\frac{\mathrm{P}_{1}^{2}}{2 \mathrm{~m}_{1}}=\frac{\mathrm{P}_{2}^{2}}{2 \mathrm{~m}_{2}}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}}=\sqrt{\frac{4}{25}}=\frac{2}{5}$
6. An object of mass 1000 kg is moving with $6 \mathrm{~m} / \mathrm{s}$. Find speed of object is mass 200 kg is added to it?
(1) $4 \mathrm{~m} / \mathrm{s}$
(2) $5 \mathrm{~m} / \mathrm{s}$
(3) $8 \mathrm{~m} / \mathrm{s}$
(4) $6 \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. Linear momentum is conserved.

$$
\begin{aligned}
& 1000 \times 6=1200\left(\mathrm{v}_{\mathrm{f}}\right) \\
& \therefore \quad \mathrm{v}_{\mathrm{f}}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. Two very long wire having current as shown. Find the magnetic field at point 'P' (in micro tesla).

Ans. 160
Sol. $\quad \mathbf{B}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{D}} \times 2$
$\mathbf{B}=\frac{2 \times 10^{-7} \times 10}{\frac{5}{2} \times 10^{-2}} \times 2$
$B=16 \times 10^{-5}$ Tesla
$B=160 \mu \mathrm{~T}$
8. If the electron revolving in the third Bohr's orbit of hydrogen species has radius R, then what will be its radius in fourth orbit in terms of R .
(1) $\frac{25 R}{9}$
(2) $\frac{16 R}{9}$
(3) $\frac{36 R}{9}$
(4) $\frac{9 R}{16}$

Ans. (B)
Sol. $\quad \mathbf{R}=\frac{\mathrm{kn}^{2}}{\mathrm{Z}}$
$\frac{\mathrm{R}}{\mathrm{R}^{\prime}}=\frac{\frac{\mathrm{k} 3^{2}}{\mathrm{Z}}}{\frac{\mathrm{k} 4^{2}}{\mathrm{Z}}}$
$\Rightarrow \quad \frac{\mathrm{R}}{\mathrm{R}^{\prime}}=\frac{9}{16}$
$\Rightarrow \quad \mathrm{R}^{\prime}=\frac{16}{9} \mathrm{R}$
9. A charge of magnitude $10^{-6} \mu \mathrm{C}$ is placed at origin in $x-y$ co-ordinate system. Find the potential difference between the two point $(\sqrt{3}, \sqrt{3})$ and $(\sqrt{6}, 0)$. (Axis are in meters)
(1) $3 \sqrt{3} \times 10^{3} \mathrm{~V}$
(2) $\frac{3}{\sqrt{3}} \times 10^{3} \mathrm{~V}$
(3) 0 V
(4) $2 \sqrt{3} \times 10^{3} \mathrm{~V}$

Ans. (3)
Sol. Same radial distance from origin Hence Potential is same at the two given point. Thus potential difference is zero
10. Magnetic field having magnitude 4 Tesla makes an angle 60° with perpendicular to loop and loop has been removed from magnetic field region within 10 seconds. Find average induced emf in loop in 10 seconds in Volts?

Ans. 1
Sol. $\mathrm{e}_{\mathrm{avg}}=\frac{\Delta \phi}{\Delta \mathrm{t}}=\frac{\mathrm{BA} \cos \theta}{10}$

$$
=4 \times 2 \times \frac{5}{2} \times \frac{\cos 60}{10}=1 \mathrm{volt}
$$

11. Find apparent depth of the object shown in figure ?

Ans. $\frac{31}{4}$
Sol. Apparent depth $=\frac{6}{3 / 2}+\frac{6}{8 / 5}=4+\frac{15}{4}=\frac{31}{5} \mathrm{~cm}$

Dreamers today IITians tomorrow....
12. An EM wave is given by

$$
\mathrm{E}=200 \sin \left[1.5 \times 10^{7} \mathrm{t}-0.05 \mathrm{x}\right] \mathrm{N} / \mathrm{C}
$$

Find the intensity of wave. [$\varepsilon_{0}=8.85 \times 10^{-12}$ SI units]
Ans. 53.1
Sol. $\quad \mathbf{I}=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2} . \mathrm{C}_{\text {mid }}$

$$
\begin{aligned}
& \mathbf{I}=\frac{1}{2} \times 8.85 \times 10^{-12} \times[200]^{2} \frac{1.5 \times 10^{7}}{0.05} \\
& \mathbf{I}=\mathbf{5 3 . 1} \mathbf{~ W} / \mathbf{m}^{\mathbf{2}}
\end{aligned}
$$

13.

Find charge on capacitor at steady state?
(1) $200 \mu \mathrm{C}$
(2) $300 \mu \mathrm{C}$
(3) $400 \mu \mathrm{C}$
(4) $500 \mu \mathrm{C}$

Ans. (3)

Sol

$\therefore \Delta \mathrm{V})_{\text {capacitor }}=\left|4-\frac{20}{3}\right|=\frac{8}{3} \mathrm{~V}$
$\therefore \mathrm{q}=\frac{8}{3} \times 150=400 \mu \mathrm{C}$
14. A particle performs SHM with an amplitude 4 cm . Speed of particle at mean position is $10 \mathrm{~cm} / \mathrm{sec}$. Find position from mean where speed is $5 \mathrm{~cm} / \mathrm{sec}$
(1) 2 cm
(2) $2 \sqrt{3} \mathrm{~cm}$
(3) 0.5 cm
(4) $\sqrt{3} \mathrm{~cm}$

Ans. (2)
Sol. $\quad 10 \mathrm{~cm} / \mathrm{s}=\mathrm{A} \omega$
$5 \mathrm{~cm} / \mathrm{s}=\omega \sqrt{\mathrm{A}^{2}-\mathrm{x}^{2}}$
using (i) and (ii)
$\mathbf{x}=\frac{\sqrt{3} \mathrm{~A}}{2}=2 \sqrt{3} \mathrm{~cm}$
15. Given :
$\mathrm{m}=0.08 \mathrm{~kg}$
$\mathrm{s}_{\mathrm{v}}=0.17 \mathrm{kcal} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=5^{\circ} \mathrm{C}$
Find change in internal energy (in Joule) of gas.
Ans. 284
Sol. $\quad \Delta \mathrm{U}=\mathrm{ms}_{\mathrm{v}} \Delta \mathrm{T}$
$\Delta \mathrm{U}=0.08 \times 0.17 \times 10^{3} \times 5$
$\Delta \mathrm{U}=68 \mathrm{cal}$
$\Delta \mathrm{U}=284.24$ Joule
16. A gas undergoes isothermal expansion from $30 \mathrm{dm}^{3}$ to $45 \mathrm{dm}^{3}$. Find heat absorbed by gas if external pressure is 10 kPa ?
(1) 100 J (2) 150 J
(3) 120 J
(4) 200 J

Ans. (C)
Sol. $\Delta \mathrm{V}=0$
$\therefore \Delta \mathrm{Q}=\mathrm{W}$
$=\operatorname{nRT} \ell \mathrm{n}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
$=P_{1} V_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$
$=10 \times 10^{3} \times 30 \times 10^{-3} \ln \left(\frac{3}{2}\right)$
$=300 \times 0.4$
$=120 \mathrm{~J}$
17. A banked road of radius 400 m is there with base separation between the rails is 1.5 m , if speed of a car for safe turning is $12 \mathrm{~m} / \mathrm{s}$, then find height of one rail w.r.t to second rail?
(1) $\mathrm{h}=0.054 \mathrm{~m}$
(2) $\mathrm{h}=0.1 \mathrm{~m}$
(3) $\mathrm{h}=0.001 \mathrm{~m}$
(4) $h=0.2 \mathrm{~m}$

Ans. (1)

Sol.

$\mathrm{N} \cos \theta=\mathrm{mg}$
$\mathrm{N} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
$\frac{\mathrm{h}}{1.5}=\frac{12 \times 12}{400 \times 10}$
$\mathrm{h}=\frac{12 \times 12}{4000} \times \frac{3}{2}=\frac{54}{1000}$
$\mathrm{h}=0.054 \mathrm{~m}$
18. A particle is moving from origin with initial velocity $5 \hat{i} \mathrm{~m} / \mathrm{s}$ and constant acceleration $3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}$. When position of particle is 84 m , its velocity is $\sqrt{\alpha} \mathrm{m} / \mathrm{s}$. Find out α :

Ans. 673
Sol. $\quad \mathrm{x}=\mathrm{u}_{\mathrm{x}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{x}} \mathrm{t}^{2}$
$84=5 t+\frac{3}{2} t^{2}$
$\mathrm{t}=6 \mathrm{sec}$.
$\dot{\mathrm{v}}=\dot{\mathrm{u}}+\dot{\mathrm{a}} \mathrm{t}$
$\dot{v}=5 \hat{i}+(3 \hat{i}+2 \hat{j}) 6$
$=23 \hat{i}+12 \hat{j}$
$=529+144$
$=\sqrt{673} \mathrm{~m} / \mathrm{s}$
$\alpha=673$
19. Statement-1 : Angular momentum and Plank constant have same dimensions.

Statement-2 : Moment of force and linear momentum have same dimensions.
(1) Both statements are true
(2) Both statements are false
(3) Statement 1 is true and $2^{\text {nd }}$ is false
(4) Statement 2 is true and $1^{\text {st }}$ is false

Ans. (3)
Sol. $\quad \mathbf{L}=\frac{\mathrm{nh}}{2 \pi}, \quad \mathrm{~F}=\frac{\mathrm{dp}}{\mathrm{dt}}$
$[\mathrm{L}]=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
$[\mathrm{h}]=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
$[\tau]=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
$[\mathrm{P}]=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
20. A proton is moving in gravity free space with constant velocity v and goes undeviated. What can be the possible conditions.
(A) $\mathrm{E}=0, \mathrm{~B}=0$
(B) $\mathrm{E}=0, \mathrm{~B} \neq 0$
(C) $\mathrm{E} \neq 0, \mathrm{~B}=0$
(D) $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
(1) A, B, D
(2) A, B, C
(3) A, B , C, D
(4) B, C, D

Ans. (1)
21. $\quad \mathbf{S}_{\mathbf{1}} \rightarrow$ Viscosity coefficient of gas is less than liquid.
$\mathbf{S}_{\mathbf{2}} \rightarrow$ Surface tension decreases if insoluble impurities are added.
(1) S_{1} is true, S_{2} is true
(2) S_{1} is false, S_{2} is false
(3) S_{1} is true, S_{2} is false
(4) S_{1} is false, S_{2} is true

Ans. (1)
22. There in a prism of apex angle of 'A'. Its refractive index is equal to $\operatorname{Cot} \frac{A}{2}$, then find minimum angle of deviation?

Ans. 2

Sol.

$1 \sin i=\mu \sin \frac{A}{2}$
$\sin \mathrm{i}=\left(\cot \frac{\mathrm{A}}{2}\right) \sin \frac{\mathrm{A}}{2}$
$\sin \mathrm{i}=\cos \frac{\mathrm{A}}{2}=\sin \left(\frac{\pi}{2}-\frac{\mathrm{A}}{2}\right)$
$\mathrm{i}=\frac{\pi}{2}-\frac{\mathrm{A}}{2}$
$\delta_{\text {min }}=2 \mathrm{i}-\mathrm{A}=\pi-2 \mathrm{~A}$

Alternate Solution

$\mathrm{n}=\frac{\sin \frac{\mathrm{A}+\delta_{\text {min }}}{2}}{\sin \frac{\mathrm{~A}}{2}}$
$\frac{\cos \frac{\mathrm{A}}{2}}{\sin \frac{\mathrm{~A}}{2}}=\frac{\sin \frac{\mathrm{A}+\delta_{\text {min }}}{2}}{\sin \frac{\mathrm{~A}}{2}}$
$\Rightarrow \delta_{\text {min }}=\pi-2 \mathrm{~A}$
23. A point charge q is placed at a centre of a charged ring of total charge Q . Find tension in the ring.

Ans. $\frac{\mathrm{KQq}}{2 \pi \mathrm{R}^{2}}$

Sol.

$$
\begin{array}{ll}
\frac{\mathrm{kqdq}}{\mathrm{R}^{2}}=2 \mathrm{~T} \sin \left(\frac{\theta}{2}\right) & \theta \simeq \text { small } \\
\frac{\mathrm{kqQ} \theta}{2 \pi \mathrm{R}^{2}}=\mathrm{T} \theta & \text { Also } \frac{\mathrm{Q}}{\mathrm{dq}}=\frac{2 \pi}{\theta} \\
\mathrm{~T}=\frac{\mathrm{KQq}}{2 \pi \mathrm{R}^{2}} &
\end{array}
$$

24. Light in incident on a convex lens of focal length 40 cm . And a metal plate is placed on focus of lens \& photo current is measure to be I. Find new photocurrent if lens is replaced by another lens focal length of 20 cm \& metal plate is kept on its focus?
Ans. I'= I

Sol.

25. In meter bridge experiment there is a resistance in right slot of length 10 cm and radius of cross section is $\sqrt{7} \times 10^{-4} \mathrm{~m}$. In left slot these is a resistance of 4.5Ω. If balance length from left is 60 cm . If unknown resistivity is $\mathrm{x} \times 10^{-7}$. Find ' x '.
Ans. 66

Sol.

$\frac{60}{40}=\frac{4.5}{\mathrm{R}} \quad \Rightarrow \quad \mathrm{R}=3 \Omega$
$\mathrm{R}=\frac{\rho!}{\mathrm{A}}$
$3=\rho \times \frac{1}{10 \times \pi \times 7 \times 10^{-8}} \Rightarrow \quad \rho=21 \pi \times 10^{-7}=21 \times \frac{20}{7} \times 10^{-7}=66 \times 10^{-7}=\mathrm{x} \times 10^{-7}$
$x=66$
26. Spherometer can't be used for measurement of :
(1) Radius of curvature of convex mirror
(2) Radius of curvature of concave mirror
(3) Thickness of capacitor plates
(4) Specific rotation of liquid

Ans. (4)
Sol. Spherometer is used to measure radius of curvature of any spherical surface and any small thickness.

IIT JEE ACADEMY

CHEMISTRY

1. Which of the following has maximum magnetic moment?
(1) $3 d^{3}$
(2) $3 d^{6}$
(3) $3 d^{7}$

Ans. (2)
2. Mass of methane required to produce $22 \mathrm{~g} \mathrm{CO}_{2}$ upon combustion is \qquad .

Ans. (8)
Sol. Moles of $\mathrm{CO}_{2}=\frac{22}{44}=0.5 \therefore \mathrm{n}_{\mathrm{CH}_{4}}=0.5 \quad \therefore \mathrm{~m}_{\mathrm{CH}_{4}}=8 \mathrm{~g}$
3. Assertion : Boron has very high melting point (2453 K)

Reason : Boron has strong crystalline lattice.
Ans. A-T ; R-T ;
Exp. \rightarrow Right
4. Sum of bond order of $\mathrm{CO} \& \mathrm{NO}^{+}$is :

Ans. (6)
Sol. $\mathrm{CO}: 3 ; \mathrm{NO}^{+}: 3$
5. How many of following have +4 oxidation number of central atom:
$\mathrm{BaSO}_{4}, \mathrm{SOCl}_{2}, \mathrm{SF}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{SO}_{3}$
Ans. (3)
Sol. $\quad \mathrm{SOCl}_{2}, \mathrm{SF}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$
6. $\mathrm{PbCrO}_{4}+\mathrm{NaOH}$ (hot excess) \longrightarrow ?

Product is :
(1) dianionic ; $\mathrm{CN}=4$
(2) tetra-anionic ; $\mathrm{CN}=6$
(3) dianionic ; $\mathrm{CN}=6$
(4) tetra-anionic ; $\mathrm{CN}=4$

Ans. (4)
7. For negative deviation from Raoult's law :
(1) BP increases ; VP increases
(2) BP decreases ; VP increases
(3) BP decreases ; VP decreases
(4) BP increases; VP decreases

Ans. (4)
8. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow$ Products

Above reaction gives red fumes (A) which on hydrolysis with aqueous NaOH gives yellow solution (B). Compounds (A) and (B) are :
Ans. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CrO}_{4}$
Sol. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(A)
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{NaOH}$ (aq.) $\rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(B)
9. Order of spin only magnetic moment for
$\left[\mathrm{FeF}_{6}\right]^{-3}$
(P)
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(Q)
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(R)
(1) $P>R>Q$
(2) P $>$ Q $>$ R
(3) R $>$ Q $>$ P
(4) Q $>$ P $>$ R

Ans. (1)
Sol. $\mathrm{P}:\left[\mathrm{FeF}_{6}\right]^{-3} \Rightarrow 3 \mathrm{~d}^{5}(\mathrm{WFL}) \Rightarrow \mathrm{n}=5 ; \mu=\sqrt{35}$
$\mathrm{Q}:\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2} \Rightarrow 3 \mathrm{~d}^{3} \Rightarrow \mathrm{n}=3 ; \mu=\sqrt{15}$
$\mathrm{R}:\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2} \Rightarrow 3 \mathrm{~d}^{6}(\mathrm{WFL}) \Rightarrow \mathrm{n}=4 ; \mu=\sqrt{24}$
10. Electronic configuration of $\operatorname{Nd}(Z=60)$ is:

Ans. $\quad[\mathrm{Xe}] 4 \mathrm{f}^{4} 6 \mathrm{~s}^{2}$
11. Statement-1: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is basic.

Statement-2: Acidic nature of salt of WA \& WB is dependent on K_{a} of WA \& K_{b} of WB.
Ans. $\quad\left(\mathrm{S}_{1} \rightarrow \mathrm{~T} ; \mathrm{S}_{2} \rightarrow \mathrm{~T}\right)$
12. Number of electrons present in all the compound filled subshell having $n=4$ and $s=+1 / 2$.

Ans. (16)
13. Consider following data:
$2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

	Experiment-1	Experiment-2	Experiment-3
$\mathrm{HI}(\mathrm{mole} / \mathrm{litre})$	0.005	0.01	0.02
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$	7.5×10^{-4}	3×10^{-3}	1.2×10^{-2}
Find order of reaction.			

Ans. (2)
Sol. Rate $=K[H I]^{x} x=$ order
$\frac{(\text { Rate })_{2}}{(\text { Rate })_{1}}=\left(\frac{[\mathrm{HI}]_{1}}{[\mathrm{HI}]_{2}}\right)^{\mathrm{x}}$
$\frac{3 \times 10^{-3}}{7.5 \times 10^{-4}}=\left(\frac{0.01}{0.005}\right)^{\mathrm{x}}$
$4=2^{x}$
$\therefore \mathrm{x}=2$
14. If 3 moles of an ideal gas at 300 K expands isothermally from $30 \mathrm{dm}^{3}$ to $45 \mathrm{dm}^{3}$ against constant pressure of 80 K pascal then the amount of heat transfer is \qquad joule.
Ans. (1200)
Sol. \quad Process \Rightarrow Isothermal, irreversible $\Rightarrow \Delta \mathrm{E}=0$
$\mathrm{P}_{\text {ext }}=$ Constant $=80 \mathrm{kPa}$
Expansion $\quad \mathrm{V}_{1}=30 \mathrm{dm}^{3} \quad \mathrm{~V}_{2}=45 \mathrm{dm}^{3}$
$\Delta \mathrm{E}=0=\mathrm{q}+\mathrm{W}$
$\mathrm{q}=-\mathrm{W}$
$\mathrm{q}=-\left[-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)\right]$
$\mathrm{q}=80 \mathrm{kPa}\left[45 \mathrm{dm}^{3}-30 \mathrm{dm}^{3}\right]$
$=80 \times 10^{3} \mathrm{~Pa} \times 15 \times 10^{-3} \mathrm{~m}^{3}$
$=1200 \mathrm{~J}$
15. The mass of silver $(\mathrm{Ag}=108 \mathrm{gm} / \mathrm{mole})$ displaces by a quantity of electricity which displaces 5600 ml of O_{2} at STP will be :
Ans. (108)
Sol. \quad mole \times valency factor $=$ mole \times valency factor
$\frac{\mathrm{W}}{108} \times 1=\frac{5600}{22400} \times 4$
$\mathrm{W}=108 \mathrm{~g}$
16. Which of the following has +4 oxidation state ?
(1) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}$

Ans. (2)
Sol. $\quad \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$+2+x-6=0$
$\mathrm{x}=+4$
17. Which halogen does not shows variable oxidation state ?
(1) F_{2}
(2) Cl_{2}
(3) Br_{2}
(4) I_{2}

Ans. (1)
Sol. F : Only (-1) in compounds
$(\because$ is not EN$)$
18. Statement-1: 4 f \& 5 f series are written separately in periodic table in order to preserve principle of classification.
Statement-2: s-Block elements can be found on earth in pure form.
Ans. First statement is correct and second is not correct.
19. Which of the following compound is most acidic?
(1)

(2)

(3)

(4)

Ans. (3)
20. Which of the following is the strongest Bronsted base?
(1)

(2)

(3)

(4)

Ans. (3)
21. The correct statement regarding stereochemistry of $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reaction is
(1) $\mathrm{S}_{\mathrm{N}} 1$ - Racemisation
$\mathrm{S}_{\mathrm{N}} 2$ - Retention
(2) $\mathrm{S}_{\mathrm{N}} 1$ - Racemisation
$\mathrm{S}_{\mathrm{N}} 2$ - Inversion
(3) $\mathrm{S}_{\mathrm{N}} 1$ - Retention
$\mathrm{S}_{\mathrm{N}} 2$ - Inversion
(4) $\mathrm{S}_{\mathrm{N}} 1$ - Inversion
$\mathrm{S}_{\mathrm{N}} 2-$ Retention
Ans. (2)
22. Which of the following has maximum enol content?
(1)

(2)

(3)

(4)

Ans. (1)
23. The correct order of acidic strength of the following compounds is
(I)

(II)

(III)

(IV)

(V)

(1) II $>$ I $>$ III $>$ V $>$ IV
(2) II $>$ I $>$ V $>$ III $>$ IV
(3) I $>$ II $>$ III $>$ V $>$ IV
(4) $\mathrm{V}>$ IV $>$ III $>$ I $>$ II

Ans. (1)
24. The correct IUPAC name of following compound is

(1) 1,1-Dimethyl-3-ethyl cyclohexane
(2) 3-Ethyl-1,1-dimethyl cyclohexane
(3) 1-Ethyl-3,3-dimethyl cyclohexane
(4) 3,3-Dimethyl-1-ethyl cyclohexane

Ans. (2)
25. Cyclohexene is classified in
(1) Benzenoid aromatic
(2) Alicyclic
(3) Benzenoid non aromatic
(4) Acyclic

Ans. (2)
26. Which of the following is polar solvent
(1) CCl_{4}
(2) CHCl_{3}
(3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(4) CO_{2}

Ans. (2)
27. When nucleotide forms dimer the linkage present between is
(1) Disulphide linkage
(2) Glycosidic linkage
(3) Phosphodiester linkage
(4) Peptide linkage

Ans. (3)
28. How many groups show meta directing effect on benzene ring?
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Ans. (4)
29.

How many products including stereoisomers are obtained in above reaction?
Ans. 4

Sol.

IIT JEE ACADEMY

MATHEMATICS

1. Find number of common terms in the two given series
$4,9,14,19 \ldots \ldots$ up to 25 terms and
$3,9,15,21 \ldots$...up to 37 terms
(1) 4
(2) 7
(3) 5
(4) 3

Ans. (1)
Sol. $4,9,14,19, \ldots \ldots .124 \rightarrow d_{1}=5$
$3,9,15,21 \ldots \ldots . .219 \rightarrow d_{2}=6$
$1^{\text {st }}$ common term $=9$ and common difference of common terms $=30$
Common terms are 9, 39, 69, 99
4 common terms
2. Let $8=3+\frac{3+p}{4}+\frac{3+2 p}{4^{2}}+\ldots . \infty$, then p is
(1) 9
(2) $\frac{5}{4}$
(3) 3
(4) 1

Ans. (1)
Sol. $8=3+\frac{3+p}{4}+\frac{3+2 p}{4^{2}}+$.
multiply both sides by $\frac{1}{4}$, we get
$2=\frac{3}{4}+\frac{3+p}{4^{2}}+$
Equation (i) - equation (ii)
$\Rightarrow 6=3+\frac{\mathrm{p}}{4}+\frac{\mathrm{p}}{4^{2}}+\ldots$.
$\Rightarrow 3=\frac{\mathrm{p}}{4\left(1-\frac{1}{4}\right)} \Rightarrow \mathrm{p}=9$
3. For $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{16}=1$, find the length of chord whose mid point is $\mathrm{P}\left(1, \frac{2}{5}\right)$
(1) $\frac{\sqrt{1681}}{5}$
(2) $\frac{\sqrt{1481}}{5}$
(3) $\frac{\sqrt{1781}}{5}$
(4) $\frac{\sqrt{1691}}{5}$

Ans. (4)

Sol. \quad By $T=S_{1}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{16}=\frac{1}{25}+\frac{4}{25} \cdot \frac{1}{16}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{40}=\frac{4+1}{100}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{40}=\frac{1}{20}$
$\Rightarrow 8 \mathrm{x}+5 \mathrm{y}=10$
$\Rightarrow \frac{\mathrm{x}^{2}}{25}+\left(\frac{10-8 \mathrm{x}}{5}\right)^{2} \frac{1}{16}=1$
$\Rightarrow \frac{\mathrm{x}^{2}}{25}+\frac{4}{25}\left(\frac{5-4 \mathrm{x}}{16}\right)^{2}=1$
$\Rightarrow \mathrm{x}^{2}+\frac{(5-4 \mathrm{x})^{2}}{4}=25$
$\Rightarrow 4 \mathrm{x}^{2}+(5-4 \mathrm{x})^{2}=100$
$\Rightarrow 20 \mathrm{x}^{2}-8 \mathrm{x}-15=0$
$\mathrm{x}_{1}+\mathrm{x}_{2}=2$
$\mathrm{x}_{1} \mathrm{X}_{2}=\frac{-15}{4}$
length of chord $=\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \sqrt{1+\mathrm{m}^{2}}$
$=\frac{\sqrt{1691}}{5}$
4. If $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f "(2)+f{ }^{\prime \prime \prime}(3)$, then find $f^{\prime}(10)$.

Ans. (202)
Sol. $\quad f^{\prime}(x)=3 x^{2}+2 x f^{\prime}(1)+f^{\prime}(2)$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}+2 \mathrm{f}^{\prime}(1)$
f "'(3) $=6$
$\mathrm{f}^{\prime}(1)=-5$
f " 2) $=2$
$\Rightarrow \mathrm{f}^{\prime}(10)=300+20(-5)+2$
$=202$
5. Let $\int_{0}^{1} \frac{d x}{\sqrt{x+3}+\sqrt{x+1}}=A+B \sqrt{2}+C \sqrt{3}$ then the value of $2 A+3 B+C$ is
(1) 3
(2) 4
(3) 5
(4) 6

Ans. (1)

Dreamers today IITians tomorrow....
Sol. On rationalising

$$
\begin{aligned}
& \int_{0}^{1} \frac{(\sqrt{x+3}-\sqrt{x+1})}{2} d x \\
& =\frac{2}{3.2}\left\{(x+3)^{3 / 2}-(x+1)^{3 / 2}\right\}_{0}^{1} \\
& =\frac{1}{3}\{8-3 \sqrt{3}-(2 \sqrt{2}-1)\} \\
& =\frac{1}{3}\{9-3 \sqrt{3}-2 \sqrt{2}\} \\
& =\left(3-\sqrt{3}-\frac{2 \sqrt{2}}{3}\right): A=3, B=-\frac{2}{3}, C=-1 \\
& \therefore 2 A+3 B+C=6-2-1=3
\end{aligned}
$$

6. If $|z-i|=|z-1|=|z+i|, z \in C$, then the numbers of z satisfying the equation are
(1) 0
(2) 1
(3) 2
(4) 4

Ans. (2)
Sol. $\quad \mathrm{z}$ is equidistant from $1, \mathrm{i}, \&-\mathrm{i}$
only $\mathrm{z}=0$ is possible
\therefore number of z equal to 1
7. If sum of coefficients in $\left(1-3 x+10 x^{2}\right)^{n}$ and $\left(1+x^{2}\right)^{n}$ is A and B respectively then
(1) $A^{3}=B$
(2) $A=B^{3}$
(3) $A=2 B$
(4) $A=B$

Ans. (2)
Sol. $\quad A=8^{n}$

$$
\mathrm{B}=2^{\mathrm{n}}
$$

(B) $\therefore \mathrm{A}=\mathrm{B}^{3}$
8. Let $a_{1}, a_{2}, \ldots, a_{10}$ are 10 observations such that $\sum_{i=1}^{10} a_{i}=50$ and $\sum_{i \neq j}^{10} a_{i} \cdot a_{j}=1100$, then their standard deviation will be
(1) $\sqrt{5}$
(2) $\sqrt{30}$
(3) $\sqrt{15}$
(4) $\sqrt{10}$

Ans. (1)
Sol. $\quad\left(a_{1}+a_{2}+\ldots .+a_{10}\right)^{2}=50^{2}$
$\Rightarrow \sum \mathrm{a}_{1}^{2}+2 \sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}=2500$
$\Rightarrow \sum \mathrm{a}_{1}^{2}=300$
$\sigma^{2}=\frac{\sum \mathrm{a}_{\mathrm{i}}^{2}}{10}-\left(\frac{\sum \mathrm{a}_{\mathrm{i}}}{10}\right)^{2}$
$\Rightarrow \sigma^{2}=5 \Rightarrow$ S.D $=\sqrt{5}$

Dreamers today IITians tomorrow.....
9. If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ then

Statement-1: $f(-x)$ is inverse of $f(x)$
Statement-2 : $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$
(1) Both are true
(2) Both are false
(3) Only statement 1 is true
(4) Only statement 2 is true

Ans. (1)
Sol. $f(x) f(y)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & 0 \\ \sin (\mathrm{x}+\mathrm{y}) & \cos (\mathrm{x}-\mathrm{y}) & 0 \\ 0 & 0 & 1\end{array}\right]$
$=f(x+y)$
$\therefore \mathrm{f}(\mathrm{x}) \mathrm{f}(-\mathrm{x})=\mathrm{f}(0)$

$$
=I
$$

10. If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$ find $a \cdot b^{3}$
(1) 16
(2) 32
(3) -16
(4) 48

Ans. (2)
Sol. $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}\left[\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right]}$
$=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}\left[\sqrt{1+\sqrt{1+x^{4}}+\sqrt{2}}\right]\left[\sqrt{1+x^{4}}+1\right]}$
$=\frac{1}{2 \sqrt{2} \times 2}=\frac{1}{4 \sqrt{2}}$
$b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{(1-\cos x)}(\sqrt{2}+\sqrt{1+\cos x})$
$=2 \times(\sqrt{2}+\sqrt{2})=4 \sqrt{2}$
$\therefore \mathrm{ab}^{3}=(4 \sqrt{2})^{2}=32$

IIT JEE ACADEMY
Dreamers today IITians tomorrow.....
11. If the minimum distance of centre of the circle $x^{2}+y^{2}-4 x-16 y+64=0$ from any point on the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is d , find d^{2}

Ans. (20)
Sol. Normal to parabola is $\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$
centre $(2,8) \rightarrow 8=2 m-2 m-\mathrm{m}^{3}$
$\Rightarrow \mathrm{m}=-2$
$\therefore \mathrm{p}$ is $\left(\mathrm{m}^{2},-2 \mathrm{~m}\right)=(4,4)$
$\Rightarrow d^{2}=4+16=20$
12. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3(\hat{i}-\hat{j}+\hat{k}), \vec{a} \times \vec{c}=\vec{b} \& \vec{a} \cdot \vec{c}=3$ find $\vec{a} \cdot(\vec{c} \times \vec{b}-\vec{b}-\vec{c})$
(1) 24
(2) -24
(3) 18
(4) 15

Ans. (1)
Sol. $\quad[\vec{a} \vec{c} \vec{b}]=(\vec{a} \times \vec{c}) \cdot \vec{b}=|\vec{b}|^{2}=27$
\therefore we need $=27-0-3=24$
13. Consider the line $L: 4 x+5 y=20$. Let two other lines are L_{1} and L_{2} which trisect the line L and pass through origin, then tangent of angle between lines L_{1} and L_{2} is
(1) $\frac{20}{41}$
(2) $\frac{30}{41}$
(3) $\frac{40}{41}$
(4) $\frac{10}{41}$

Ans. (2)
Sol. Let line L intersect the lines L_{1} and L_{2} at P and Q
$\mathrm{P}\left(\frac{10}{3}, \frac{4}{3}\right), \mathrm{Q}\left(\frac{5}{3}, \frac{8}{3}\right)$
$\therefore \mathrm{m}_{\mathrm{OA}}=\frac{2}{5}$
$\mathrm{m}_{\mathrm{OQ}}=\frac{8}{5}$
$\tan \theta=\left|\frac{\frac{8}{5}-\frac{2}{5}}{1+\frac{16}{25}}\right|$
$=\left(\frac{6}{5} \times \frac{25}{41}\right)$
$=\frac{30}{41}$
14. If ${ }^{n-1} C_{r}=\left(k^{2}-8\right)^{n} C_{r+1}$, then the range of ' k ' is
(1) $\mathrm{k} \in(2 \sqrt{2}, 3]$
(2) $\mathrm{k} \in(2 \sqrt{2}, 3)$
(3) $k \in[2,3)$
(4) $\mathrm{k} \in(2 \sqrt{2}, 8)$

Ans. (1)
Sol. $\quad{ }^{n-1} C_{r}=\left(k^{2}-8\right) \frac{n}{r+1} \cdot{ }^{n-1} C_{r}$
$\Rightarrow \mathrm{k}^{2}-8=\frac{\mathrm{r}+1}{\mathrm{n}}$
here $r \in[0, n-1]$
$\Rightarrow \mathrm{r}+1 \in[1, \mathrm{n}]$
$\Rightarrow \mathrm{k}^{2}-8 \in\left[\frac{1}{\mathrm{n}}, 1\right]$
$\Rightarrow \mathrm{k}^{2} \in\left[8+\frac{1}{\mathrm{n}}, 9\right]$
$\Rightarrow \mathrm{k} \in(2 \sqrt{2}, 3]$
15. If $\alpha x+\beta y+9 \ln |2 x+3 y-8 \lambda|=x+C$ is the solution of $(2 x+3 y-2) d x+(4 x+6 y-7) d y=0$, then $\alpha+\beta+\gamma=$
(1) 18
(2) 19
(3) 20
(4) 21

Ans. (1)
Sol. Let $2 \mathrm{x}+3 \mathrm{y}=\mathrm{t}$
$\Rightarrow 2+3 \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
Now $(\mathrm{t}-2)+(2 \mathrm{t}-7)\left(\frac{\mathrm{dt}}{\mathrm{dx}}-2\right) \times \frac{1}{3}=0$
$\Rightarrow-\frac{(3 \mathrm{t}-6)}{2 \mathrm{t}-7}=\frac{\mathrm{dt}}{\mathrm{dx}}-2$
$\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{t}-8}{2 \mathrm{t}-7}$
$\Rightarrow \int \frac{2 \mathrm{t}-7}{\mathrm{t}-8} \mathrm{dt}=\int \mathrm{dx}$
$\Rightarrow \int 2+\frac{9}{\mathrm{t}-8} \mathrm{dt}=\int \mathrm{dx}$
$\Rightarrow 2 \mathrm{t}+|9 \ln | \mathrm{t}-8 \mid=\mathrm{x}+\mathrm{C}$
$\Rightarrow 2(2 x+3 y)+9 \ln |2 x+3 y-8|=x+C$
$\alpha=4, \beta=6, \gamma=8$

IIT JEE ACADEMY
Dreamers today IITians tomorrow....
16. $f: N-\{1\} \rightarrow N$ and $f(n)=$ highest prime factor of ' n ', then f is
(1) one-one, onto
(2) many-one, onto
(3) many-one, into
(4) one-one, into

Ans. (3)
Sol. \quad ' 4 ' is not image of any element \Rightarrow into
$\mathrm{f}(10)=5=\mathrm{f}(15) \Rightarrow$ many-one
17. If $P(X)$ represent the probability of getting a ' 6 ' in the $X^{\text {th }}$ roll of a die for the first time. Also
$\mathrm{a}=\mathrm{P}(\mathrm{X}=3)$
$\mathrm{b}=\mathrm{P}(\mathrm{X} \geq 3)$
$c=P\left(\frac{X \geq 6}{x>3}\right)$, then $\frac{b+c}{a}=$?
Ans. (12)
Sol. $\quad P(X=3)=\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}=a$
$P(X \geq 3)=\left(\frac{5}{6}\right)^{2}=b$
$P\left(\frac{X \geq 6}{X>3}\right)=\left(\frac{5}{6}\right)^{2}=c$
$\therefore \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}=\frac{2\left(\frac{5}{6}\right)^{2}}{\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}}=12$
18. If the angle between two vectors $\vec{a}=\alpha \hat{i}-4 \hat{j}-\hat{k}$ and $\vec{b}=\alpha \hat{i}+\alpha \hat{j}+4 \hat{k}$ is acute then find positive integral value of α.
(1) 4
(2) 5
(3) 6
(4) 7

Ans. (2)
Sol. $\quad \vec{a} \cdot \vec{b}>0$
$\Rightarrow \alpha^{2}-4 \alpha-4>0$
$\alpha<(2-2 \sqrt{2})$ or $\alpha>(2+2 \sqrt{2})$
19. If $\mathrm{S}=\{1,2, \ldots \ldots \ldots \ldots .10\}$ and $\mathrm{M}=\mathrm{P}(\mathrm{S})$,

If ARB such that $A \cap B \neq \phi$ where $A \in M, B \in M$
Then
(1) R is reflexive and symmetric
(2) Only symmetric
(3) Only reflexive
(4) Symmetric and transitive

Ans. (2)

IIT JEE ACADEMY

Sol. $\phi \cap \phi=\phi \quad \Rightarrow(\phi, \phi) \notin \mathrm{R} \quad \Rightarrow$ not reflexive.
If $A \cap B \neq \phi \quad \Rightarrow B \cap A \neq \phi \Rightarrow$ Symmetric
If $A \cap B \neq \phi$ and $B \cap C \neq \phi \Rightarrow A \cap C=\phi$
for example $\mathrm{A}=\{1,2\}$
$B=\{2,3\}$
$\mathrm{C}=\{3,4\}$
20. If four points $(0,0),(1,0),(0,1),(2 k, 3 k)$ are concyclic, then k is
(1) $\frac{4}{13}$
(2) $\frac{5}{13}$
(3) $\frac{7}{13}$
(4) $\frac{9}{13}$

Ans. (2)
Sol. Equation of circle is
$x(x-1)+y(y-1)=0$
$x^{2}+y^{2}-x-y=0$
B(2k, 3k)
$\Rightarrow 4 \mathrm{k}^{2}+9 \mathrm{k}^{2}-2 \mathrm{k}-3 \mathrm{k}=0$
$\Rightarrow 13 \mathrm{k}^{2}=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=0, \frac{5}{13}$
$\therefore \mathrm{k}=\frac{5}{13}$
21. If $f(x)$ is differentiable function satisfying $f(x)-f(y) \geq \log \frac{x}{y}+x-y$, then find $\sum_{N=1}^{20} f^{\prime}\left(\frac{1}{N^{2}}\right)$

Ans. (2890)
Sol. Let $\mathrm{x}>\mathrm{y}$
Let $\mathrm{x}<\mathrm{y}$
$\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y} \geq \frac{\log x-\log y}{x-y}+1$
$\frac{f(x)-f(y)}{x-y} \leq \frac{\log x-\log y}{x-y}+1$
$\mathrm{f}^{\prime}\left(\mathrm{x}^{-}\right) \geq \frac{1}{\mathrm{x}}+1$
$\mathrm{f}^{\prime}\left(\mathrm{x}^{+}\right) \leq \frac{1}{\mathrm{x}}+1$
$\Rightarrow \mathrm{f}^{\prime}\left(\mathrm{x}^{-}\right)=\mathrm{f}^{\prime}\left(\mathrm{x}^{+}\right)$as $\mathrm{f}(\mathrm{x})$ is differentiable function
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}+1$
$\mathrm{f}^{\prime}\left(\frac{1}{\mathrm{~N}^{2}}\right)=\mathrm{N}^{2}+1$
$\sum_{\mathrm{N}=1}^{20} \mathrm{f}^{\prime}\left(\frac{1}{\mathrm{~N}^{2}}\right)=\sum\left(\mathrm{N}^{2}+1\right)=\frac{20 \times 21 \times 41}{6}+20=2890$
22. Let $\frac{d x}{d t}+a x=0$ and $\frac{d y}{d t}+b y=0$ where $y(0)=1, x(0)=2$, and $x(t)=y(t)$, then t is
(1) $\frac{\ln 3}{a-b}$
(2) $\frac{\ln 2}{b-a}$
(3) $\frac{\ln 2}{a-b}$
(4) $\frac{\ln 3}{b-a}$

Ans. (3)
Sol. $\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{ax}=0$
$\Rightarrow \ln x=-a t+c$
$\mathrm{x}(0)=2 \Rightarrow \mathrm{c}=\ln 2$
$\therefore \mathrm{x}=2 \mathrm{e}^{-\mathrm{at}}$
$\frac{d y}{d t}+b y=0 \Rightarrow y=e^{-b t}$
$\mathrm{x}(\mathrm{t})=\mathrm{g}(\mathrm{t})$
$2 e^{-a t}=e^{-b t}$
$\Rightarrow \mathrm{t}=\frac{\ln 2}{\mathrm{a}-\mathrm{b}}$
23. If $H(a, b)$ is the orthocentre of $\triangle A B C$ where $A(1,2), B(2,3) \& C(3,1)$, then find $\frac{36 I_{1}}{I_{2}}$ if $I_{1}=\int_{a}^{b} x \sin \left(4 x-x^{2}\right) d x$ and $I_{2}=\int_{a}^{b} \sin \left(4 x-x^{2}\right) d x$

Ans. (72)
Sol. $\triangle \mathrm{ABC}$ is isosceles
$\Rightarrow \mathrm{H}$ lies on angle bisector passing through $(3,1)$ which is $\mathrm{x}+\mathrm{y}=4$
$\therefore \mathrm{a}+\mathrm{b}=4$
Now apply $(a+b-x)$ in I_{1}
$2 I_{1}=\int_{a}^{b} 4 \sin \left(4 x-x^{2}\right) d x$
$\Rightarrow 2 \mathrm{I}_{1}=4 \mathrm{I}_{2}$
$\Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=2$
$\therefore \frac{36 \mathrm{I}_{1}}{\mathrm{I}_{2}}=72$
$2^{\frac{\sin (x-3)}{x-[x]}} \quad, \quad x>3$
24. $f(x)=\left\{-\frac{a\left(x^{2}-7 x+12\right)}{b\left|x^{2}-7 x+12\right|}, \quad x<3\right.$. Find number of ordered pairs (a, b) so that $f(x)$ is continuous b $\quad, \quad x=3$
at $\mathrm{x}=3$
Ans. (1)
Sol. $\quad \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(3)$
$-\frac{\mathrm{a}}{\mathrm{b}}=2^{1}=\mathrm{b}$
$\Rightarrow \mathrm{b}=2$ and $\mathrm{a}=-4$
$\Rightarrow(\mathrm{a}, \mathrm{b})=(-4,2)$
25. Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 2 & 0\end{array}\right], B=\left[B_{1} B_{2} B_{3}\right]$ where B_{1}, B_{2}, B_{3} are column matrices such that
$\mathrm{AB}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{AB}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \mathrm{AB}_{3}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
$\alpha=$ sum of diagonal elements of B
$\beta=|\mathrm{B}|$, then find $\left|\alpha^{3}+\beta^{3}\right|$
Ans. (1.125)
Sol. $\quad A^{-1}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 1 & -2 & 0\end{array}\right]$
$\mathrm{B}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathrm{B}_{2}=\left[\begin{array}{l}0 \\ \frac{1}{2} \\ 2\end{array}\right], \mathrm{B}_{3}=\left[\begin{array}{c}2 \\ -\frac{5}{2} \\ -1\end{array}\right]$
$\operatorname{Tr}(B)=-\frac{1}{2}$
$|B|=-1$
$\therefore \mathrm{a}=-\frac{1}{2}, \mathrm{~b}=-1$
$\left|\alpha^{3}+\beta^{3}\right|=\frac{9}{8}=1.125$

KAUTICY
IIT JEE ACADEMY
Dreamers today IITians tomorrow...
26. If $\cos (2 x)-a \sin x=2 a-7$ has a solution for $a \in[p, q]$ and $r=\tan 9^{\circ}+\tan 63^{\circ}+\tan 81^{\circ}+\tan 27^{\circ}$, then p.q. $\mathrm{r}=$?
(1) $40 \sqrt{5}$
(2) $32 \sqrt{5}$
(3) $30 \sqrt{5}$
(4) $48 \sqrt{5}$

Ans. (4)
Sol. $\quad 2\left(\sin ^{2} \mathrm{x}-4\right)+\mathrm{a}(\sin \mathrm{x}+2)=0$
$2(\sin x-2)+a=0$
$\Rightarrow \mathrm{a}=4-2 \sin \mathrm{x}$
$a \in[2,6]$
Also, $\mathrm{r}=\left(\tan 9^{\circ}+\frac{1}{\tan 9^{\circ}}\right)+\left(\tan 27^{\circ}+1 \frac{1}{\tan 27^{\circ}}\right)$
$=\frac{2}{\sin 18^{\circ}}+\frac{2}{\sin 54^{\circ}}$
$=\frac{2 \times 4}{\sqrt{5}-1}+\frac{2 \times 4}{\sqrt{5}+1}$
$=\frac{8 \times 2 \sqrt{5}}{4}=4 \sqrt{5}$
$\therefore \mathrm{pqr}=48 \sqrt{5}$

