

27 Jan. Shift -1, JEE Main Paper

Questions & Solutions (Memory Based)

PHYSICS

SECTION-A

1. Which among the following is forward biased:

$$(2) \quad 0V \qquad \qquad +5V$$

$$(4) \quad -4V \qquad -3V$$

Ans. (1)

Sol. Basic theory.

2. A uniform and homogeneous rod has resistance R. If rod is cut into 5 equal parts and connected in parallel find equivalent resistance?

Ans.
$$\frac{R}{25}$$

Sol.

$$\Rightarrow \frac{R}{25}$$
 Answer

- 3. Acceleration due to earth on the surface is g_0 . If mass of earth remains same but radius is half, then find the acceleration on the surface for new system :
 - (1) $\frac{g_0}{2}$
- (2) g_0
- $(3) 2 g_0$
- $(4) 4 g_0$

Ans. (D)

Sol.
$$g_0 = \frac{Gm}{R^2}$$

$$g = \frac{Gm}{(R/2)^2} = \frac{4Gm}{R^2} = 4g_0$$

4. Find moment of inertia about an axis passing though one corner and perpendicular to the plane.

Ans. 4 ma^2

Sol.
$$I = ma^2 + ma^2 + m\left(\sqrt{2}a\right)^2 + 0 = 4 ma^2$$

- 5. Two particles having mass 4g & 25g have same kinetic energy. Find ratio of their momentum?
 - $(1) \frac{2}{5}$
- (2) $\frac{2}{3}$
- (3) $\frac{4}{5}$
- $(4) \frac{3}{4}$

Ans. (1)

Sol.
$$KE_1 = KE_2$$

$$\frac{P_1^2}{2m_1} = \frac{P_2^2}{2m_2}$$

$$\frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{4}{25}} = \frac{2}{5}$$

- **6.** An object of mass 1000 kg is moving with 6 m/s. Find speed of object is mass 200 kg is added to it?
 - (1) 4 m/s
- (2) 5 m/s
- (3) 8 m/s
- (4) 6 m/s

Ans. (2)

Sol. Linear momentum is conserved.

$$1000 \times 6 = 1200 (v_f)$$

$$\therefore$$
 $v_f = 5 \text{ m/s}$

7. Two very long wire having current as shown. Find the magnetic field at point 'P' (in micro tesla).

Ans. 160

Sol. $\mathbf{B} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{D}} \times 2$

$$\mathbf{B} = \frac{2 \times 10^{-7} \times 10}{\frac{5}{2} \times 10^{-2}} \times 2$$

$$B = 16 \times 10^{-5} \text{ Tesla}$$

$$B = 160 \mu T$$

- **8.** If the electron revolving in the third Bohr's orbit of hydrogen species has radius R, then what will be its radius in fourth orbit in terms of R.
 - (1) $\frac{25R}{9}$
- (2) $\frac{16R}{9}$
- (3) $\frac{36R}{9}$
- (4) $\frac{9R}{16}$

Ans. (B)

Sol. $\mathbf{R} = \frac{\mathrm{kn}^2}{\mathrm{Z}}$

$$\frac{R}{R'} = \frac{\frac{k3^2}{Z}}{\frac{k4^2}{Z}}$$

- $\Rightarrow \frac{R}{R'} = \frac{9}{16}$
- \Rightarrow R' = $\frac{16}{9}$ R

- 9. A charge of magnitude $10^{-6}\mu\text{C}$ is placed at origin in x-y co-ordinate system. Find the potential difference between the two point $(\sqrt{3}, \sqrt{3})$ and $(\sqrt{6}, 0)$. (Axis are in meters)
 - (1) $3\sqrt{3} \times 10^3 \text{ V}$ (2) $\frac{3}{\sqrt{3}} \times 10^3 \text{ V}$
 - (3) 0V (4) $2\sqrt{3} \times 10^3 \text{ V}$

Ans. (3)

- **Sol.** Same radial distance from origin Hence Potential is same at the two given point. Thus potential difference is zero
- 10. Magnetic field having magnitude 4 Tesla makes an angle 60° with perpendicular to loop and loop has been removed from magnetic field region within 10 seconds. Find average induced emf in loop in 10 seconds in Volts?

Ans.

Sol.
$$e_{avg} = \frac{\Delta \phi}{\Delta t} = \frac{BA \cos \theta}{10}$$

= $4 \times 2 \times \frac{5}{2} \times \frac{\cos 60}{10} = 1 \text{ volt}$

11. Find apparent depth of the object shown in figure?

Ans.
$$\frac{31}{4}$$

Sol. Apparent depth =
$$\frac{6}{3/2} + \frac{6}{8/5} = 4 + \frac{15}{4} = \frac{31}{5}$$
cm

12. An EM wave is given by

$$E = 200 \sin [1.5 \times 10^7 t - 0.05 x] N/C$$

Find the intensity of wave. [$\epsilon_0 = 8.85 \times 10^{-12} \text{ SI units}$]

Ans. 53.1

Sol.
$$\mathbf{I} = \frac{1}{2} \varepsilon_0 E_0^2.C_{\text{mid}}$$

$$\mathbf{I} = \frac{1}{2} \times 8.85 \times 10^{-12} \times [200]^2 \frac{1.5 \times 10^7}{0.05}$$

 $I = 53.1 \text{ W/m}^2$

Find charge on capacitor at steady state?

(1) $200 \mu C$

(2) $300 \mu C$

 $(3) 400 \mu C$

(4) $500 \mu C$

Ans. (3)

$$\therefore \Delta V)_{capacitor} = \left| 4 - \frac{20}{3} \right| = \frac{8}{3} V$$

$$\therefore q = \frac{8}{3} \times 150 = \boxed{400 \mu C}$$

- A particle performs SHM with an amplitude 4 cm. Speed of particle at mean position is 10 cm/sec. Find 14. position from mean where speed is 5 cm/sec
 - (1) 2 cm
- (2) $2\sqrt{3}$ cm
- (3) 0.5 cm
- (4) $\sqrt{3}$ cm

Ans. **(2)**

- $10 \text{ cm/s} = A\omega$ Sol.
- $5 \text{ cm/s} = \omega \sqrt{A^2 x^2}$...(ii)
- using (i) and (ii)

$$x = \frac{\sqrt{3}A}{2} = 2\sqrt{3}$$
 cm

15. Given:

$$m = 0.08 \text{ kg}$$

 $s_v = 0.17 \text{ kcal/kg-}^{\circ}\text{C}$

$$\Delta T = 5^{\circ}C$$

Find change in internal energy (in Joule) of gas.

- 284 Ans.
- Sol. $\Delta U = m s_v \Delta T$

$$\Delta U = 0.08 \times 0.17 \times 10^3 \times 5$$

$$\Delta U = 68 \text{ cal}$$

$$\Delta U = 284.24$$
 Joule

- A gas undergoes isothermal expansion from 30 dm³ to 45 dm³. Find heat absorbed by gas if external 16. pressure is 10 kPa?
 - (1) 100 J (2) 150 J
- (3) 120 J
- (4) 200 J

Ans. (C)

Sol.
$$\Delta V = 0$$

$$\Delta Q = w$$

$$= nRT \ell n \left(\frac{V_2}{V_1} \right)$$

$$= P_1 V_1 \, \ell n \left(\frac{V_2}{V_1} \right)$$

$$= 10 \times 10^3 \times 30 \times 10^{-3} \ln \left(\frac{3}{2} \right)$$

$$= 300 \times 0.4$$

= 120 J

17. A banked road of radius 400 m is there with base separation between the rails is 1.5 m, if speed of a car for safe turning is 12 m/s, then find height of one rail w.r.t to second rail?

$$(1) h = 0.054 m$$

$$(2) h = 0.1 m$$

$$(3) h = 0.001 m$$

$$(4) h = 0.2 m$$

Ans. (1)

Sol.

$$N\cos\theta = mg$$

$$N\sin\theta = \frac{mv^2}{r}$$

$$tan\theta = \frac{v^2}{rg}$$

$$\frac{h}{1.5} = \frac{12 \times 12}{400 \times 10}$$

$$h = \frac{12 \times 12}{4000} \times \frac{3}{2} = \frac{54}{1000}$$

$$h = 0.054 \text{ m}$$

18. A particle is moving from origin with initial velocity $5 \hat{i}$ m/s and constant acceleration $3\hat{i} + 2\hat{j}$ m/s². When position of particle is 84 m, its velocity is $\sqrt{\alpha}$ m/s. Find out α :

Ans. 673

Sol.
$$x = u_x t + \frac{1}{2} a_x t^2$$

$$84 = 5t + \frac{3}{2}t^2$$

$$t = 6 \text{ sec.}$$

$$\dot{\mathbf{v}} = \dot{\mathbf{u}} + \dot{\mathbf{a}}\mathbf{t}$$

$$\dot{v} = 5\hat{i} + (3\hat{i} + 2\hat{j}) 6$$

$$= 23\hat{i} + 12\hat{j}$$

$$= 529 + 144$$

$$=\sqrt{673} \, \text{m/s}$$

$$\alpha = 673$$

19. **Statement-1:** Angular momentum and Plank constant have same dimensions.

Statement-2: Moment of force and linear momentum have same dimensions.

- (1) Both statements are true
- (2) Both statements are false
- (3) Statement 1 is true and 2nd is false
- (4) Statement 2 is true and 1st is false

(3) Ans.

Sol.
$$L = \frac{nh}{2\pi}$$
, $F = \frac{dp}{dt}$

$$F = \frac{dp}{dt}$$

$$[L] = M^1 L^2 T^{-1}$$

$$[h] = ML^2T^{-1}$$

$$[\tau] = M^1 L^2 T^{-2}$$

$$[P] = M^1 L^1 T^{-1}$$

20. A proton is moving in gravity free space with constant velocity v and goes undeviated. What can be the possible conditions.

(A)
$$E = 0$$
, $B = 0$

(B)
$$E = 0, B \neq 0$$

(C)
$$E \neq 0$$
, $B = 0$

(D) E
$$\neq$$
 0, B \neq 0

$$(1)$$
 A, B, D

(1) Ans.

- $S_1 \rightarrow V$ iscosity coefficient of gas is less than liquid. 21.
 - $S_2 \rightarrow$ Surface tension decreases if insoluble impurities are added.

(1) S_1 is true, S_2 is true

(2) S_1 is false, S_2 is false

(3) S_1 is true, S_2 is false

(4) S_1 is false, S_2 is true

Ans. **(1)**

22. There in a prism of apex angle of 'A'. Its refractive index is equal to Cot $\frac{A}{2}$, then find minimum angle of deviation?

Ans. 2

Sol.

$$1 \sin i = \mu \sin \frac{A}{2}$$

$$\sin i = \left(\cot \frac{A}{2}\right) \sin \frac{A}{2}$$

$$\sin i = \cos \frac{A}{2} = \sin \left(\frac{\pi}{2} - \frac{A}{2} \right)$$

$$i = \frac{\pi}{2} - \frac{A}{2}$$

$$\delta_{min} = 2i - A = \pi - 2A$$

Alternate Solution

$$n = \frac{\sin\frac{A + \delta_{min}}{2}}{\sin\frac{A}{2}}$$

$$\frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} = \frac{\sin\frac{A + \delta_{\min}}{2}}{\sin\frac{A}{2}}$$

$$\Rightarrow \delta_{\min} = \pi - 2A$$

23. A point charge q is placed at a centre of a charged ring of total charge Q. Find tension in the ring.

Ans.
$$\frac{KQq}{2\pi R^2}$$

Sol.

$$\frac{kqdq}{R^2} = 2T\sin\left(\frac{\theta}{2}\right)$$

 $\theta \simeq \text{small}$

$$\frac{kqQ\theta}{2\pi R^2} = T\theta$$

Also
$$\frac{Q}{dq} = \frac{2\pi}{\theta}$$

$$T = \frac{KQq}{2\pi R^2}$$

24. Light in incident on a convex lens of focal length 40 cm. And a metal plate is placed on focus of lens & photo current is measure to be I. Find new photocurrent if lens is replaced by another lens focal length of 20 cm & metal plate is kept on its focus?

Ans. I'=I

f = 20 cmSol.

25. In meter bridge experiment there is a resistance in right slot of length 10 cm and radius of cross section is $\sqrt{7} \times 10^{-4}$ m. In left slot these is a resistance of 4.5 Ω . If balance length from left is 60 cm. If unknown resistivity is $x \times 10^{-7}$. Find 'x'.

66 Ans.

Sol.

$$\frac{60}{40} = \frac{4.5}{R}$$
 \Rightarrow $R = 3\Omega$

$$R \equiv \frac{\rho\ell}{A}$$

$$3 = \rho \times \frac{1}{10 \times \pi \times 7 \times 10^{-8}} \implies \qquad \rho = 21\pi \times 10^{-7} = 21 \times \frac{20}{7} \times 10^{-7} = 66 \times 10^{-7} = x \times 10^{-7}$$

$$x = 66$$

- **26.** Spherometer can't be used for measurement of :
 - (1) Radius of curvature of convex mirror
 - (2) Radius of curvature of concave mirror
 - (3) Thickness of capacitor plates
 - (4) Specific rotation of liquid
- **Ans.** (4)
- **Sol.** Spherometer is used to measure radius of curvature of any spherical surface and any small thickness.

CHEMISTRY

- 1. Which of the following has maximum magnetic moment?
 - $(1) 3d^3$
- $(2) 3d^6$
- $(3) 3d^7$

- Ans. (2)
- 2. Mass of methane required to produce 22 g CO₂ upon combustion is _____.
- Ans. (8)
- **Sol.** Moles of $CO_2 = \frac{22}{44} = 0.5$: $n_{CH_4} = 0.5$: $m_{CH_4} = 8g$
- **3.** Assertion: Boron has very high melting point (2453 K) Reason: Boron has strong crystalline lattice.
- **Ans.** A-T; R-T;

Exp. \rightarrow Right

- 4. Sum of bond order of CO & NO⁺ is:
- Ans. (6)

Sol. $CO:3; NO^+:3$

5. How many of following have +4 oxidation number of central atom: BaSO₄, SOCl₂, SF₄, H₂SO₃, H₂S₂O₇, SO₃

Ans. (3)

Sol. SOCl₂, SF₄, H₂SO₃

6. PbCrO₄ + NaOH (hot excess) \longrightarrow ?

Product is:

(1) dianionic; CN = 4

(2) tetra-anionic; CN = 6

(3) dianionic; CN = 6

(4) tetra-anionic; CN = 4

Ans. (4)

- 7. For negative deviation from Raoult's law:
 - (1) BP increases; VP increases
- (2) BP decreases; VP increases
- (3) BP decreases; VP decreases
- (4) BP increases; VP decreases

- **(4)** Ans.
- $NaCl + H_2SO_4 + K_2Cr_2O_7 \longrightarrow Products$ 8.

Above reaction gives red fumes (A) which on hydrolysis with aqueous NaOH gives yellow solution (B). Compounds (A) and (B) are:

- CrO₂Cl₂, Na₂CrO₄ Ans.
- Sol. $NaCl + H_2SO_4 + K_2Cr_2O_7 \rightarrow CrO_2Cl_2 + Na_2SO_4 + K_2SO_4 + H_2O$

(A)

 $CrO_2Cl_2 + NaOH (aq.) \rightarrow Na_2CrO_4 + NaCl + H_2O$ (B)

Order of spin only magnetic moment for 9.

 $[FeF_6]^{-3}$

$$[V(H_2O)_6]^{+2}$$

$$[Fe(H_2O)_6]^{+2}$$

(P)

(2)
$$P > Q > R$$

(3)
$$R > Q > P$$

(1) Ans.

P: $[FeF_6]^{-3} \Rightarrow 3d^5$ (WFL) $\Rightarrow n = 5$; $\mu = \sqrt{35}$ Sol.

Q: $[V(H_2O)_6]^{+2} \Rightarrow 3d^3 \Rightarrow n = 3$; $\mu = \sqrt{15}$

R: $[Fe(H_2O)_6]^{+2} \Rightarrow 3d^6(WFL) \Rightarrow n = 4$; $\mu = \sqrt{24}$

10. Electronic configuration of Nd(Z = 60) is :

[Xe] $4f^4 6s^2$ Ans.

Statement-1: $(NH_4)_2CO_3$ is basic. 11.

Statement-2: Acidic nature of salt of WA & WB is dependent on K_a of WA & K_b of WB.

 $(S_1 \rightarrow T; S_2 \rightarrow T)$ Ans.

12. Number of electrons present in all the compound filled subshell having n = 4 and s = +1/2.

Ans. (16)

13. Consider following data:

$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

	Experiment-1	Experiment-2	Experiment-3
HI(mole/litre)	0.005	0.01	0.02
Rate (mol L^{-1} s ⁻¹)	7.5×10^{-4}	3×10^{-3}	1.2×10^{-2}

Find order of reaction.

Ans. (2)

Sol. Rate =
$$K[HI]^x$$
 x = order

$$\frac{(\text{Rate})_2}{(\text{Rate})_1} = \left(\frac{[\text{HI}]_1}{[\text{HI}]_2}\right)^x$$

$$\frac{3 \times 10^{-3}}{7.5 \times 10^{-4}} = \left(\frac{0.01}{0.005}\right)^{x}$$

$$4 = 2^{x}$$

$$\therefore x = 2$$

14. If 3 moles of an ideal gas at 300 K expands isothermally from 30 dm³ to 45 dm³ against constant pressure of 80 K pascal then the amount of heat transfer is ____ joule.

Ans. (1200)

Sol. Process
$$\Rightarrow$$
 Isothermal, irreversible $\Rightarrow \Delta E = 0$

$$P_{ext} = Constant = 80 \text{ kPa}$$

Expansion
$$V_1 = 30 \text{ dm}^3$$
 $V_2 = 45 \text{ dm}^3$

$$\Delta E = 0 = q + W$$

$$q = -W$$

$$q = -[-P(V_2 - V_1)]$$

$$q = 80 \text{ kPa} [45 \text{ dm}^3 - 30 \text{ dm}^3]$$

$$= 80 \times 10^3 \text{ Pa} \times 15 \times 10^{-3} \text{ m}^3$$

$$= 1200 J$$

15. The mass of silver (Ag = 108 gm/mole) displaces by a quantity of electricity which displaces 5600 ml of O_2 at STP will be :

Ans. (108)

Sol. $mole \times valency factor = mole \times valency factor$

$$\frac{W}{108} \times 1 = \frac{5600}{22400} \times 4$$

$$W = 108 g$$

- **16.** Which of the following has +4 oxidation state?
 - $(1) H_2S_2O_7$
- (2) H₂SO₃

Ans. (2)

Sol. $H_2S_2O_3$

$$+2 + x - 6 = 0$$

$$x = +4$$

- 17. Which halogen does not shows variable oxidation state?
 - $(1) F_2$
- (2) Cl₂
- (3) Br₂
- $(4) I_2$

Ans. (1)

Sol. F: Only (-1) in compounds

(∵ is not EN)

18. Statement-1: 4f & 5f series are written separately in periodic table in order to preserve principle of classification.

Statement-2: s-Block elements can be found on earth in pure form.

- **Ans.** First statement is correct and second is not correct.
- 19. Which of the following compound is most acidic?

Ans. (3)

20. Which of the following is the strongest Bronsted base?

Ans. (3)

- 21. The correct statement regarding stereochemistry of S_N1 and S_N2 reaction is
 - (1) $S_N 1$ Racemisation

 $S_N 2 - Retention$

(2) $S_N 1$ – Racemisation

 $S_N 2$ – Inversion

(3) $S_N 1$ – Retention

 $S_N 2$ – Inversion

 $(4) \ S_N 1 - Inversion$

 $S_N 2-Retention \\$

Ans. (2)

22. Which of the following has maximum enol content?

Ans. (1)

23. The correct order of acidic strength of the following compounds is

(1) II > I > III > V > IV

(2) II > I > V > III > IV

(3) I > II > III > V > IV

(4) V > IV > III > I > II

Ans. (1)

24. The correct IUPAC name of following compound is

- (1) 1,1-Dimethyl-3-ethyl cyclohexane
- (2) 3-Ethyl-1,1-dimethyl cyclohexane
- (3) 1-Ethyl-3,3-dimethyl cyclohexane
- (4) 3,3-Dimethyl-1-ethyl cyclohexane

Ans. (2)

- **25.** Cyclohexene is classified in
 - (1) Benzenoid aromatic

- (2) Alicyclic
- (3) Benzenoid non aromatic
- (4) Acyclic

Ans. (2)

- **26.** Which of the following is polar solvent
 - (1) CCl₄
- (2) CHCl₃
- $(3) CH_2 = CH_2$
- (4) CO₂

Ans. (2)

- 27. When nucleotide forms dimer the linkage present between is
 - (1) Disulphide linkage
- (2) Glycosidic linkage
- (3) Phosphodiester linkage
- (4) Peptide linkage

Ans. (3)

28. How many groups show meta directing effect on benzene ring?

$$(5) \bigcirc OCH_3 \qquad NO_2 \qquad (8) \bigcirc$$

Ans. (4)

How many products including stereoisomers are obtained in above reaction?

Ans. 4

MATHEMATICS

1. Find number of common terms in the two given series

4, 9, 14, 19...... up to 25 terms and

3, 9, 15, 21up to 37 terms

- (1)4
- (2)7
- (3)5
- (4) 3

Ans. **(1)**

- $4, 9, 14, 19, \dots 124 \rightarrow d_1 = 5$ Sol.
 - $3, 9, 15, 21 \dots 219 \rightarrow d_2 = 6$

 1^{st} common term = 9 and common difference of common terms = 30

Common terms are 9, 39, 69, 99

4 common terms

- Let $8 = 3 + \frac{3+p}{4} + \frac{3+2p}{4^2} + \dots \infty$, then p is 2.
 - (1)9
- (2) $\frac{5}{4}$
- (3) 3
- (4) 1

Ans.

Sol. $8 = 3 + \frac{3+p}{4} + \frac{3+2p}{4^2} + \dots$ (i)

multiply both sides by $\frac{1}{4}$, we get

$$2 = \frac{3}{4} + \frac{3+p}{4^2} + \dots$$
 (ii)

Equation (i) – equation (ii)

$$\Rightarrow 6 = 3 + \frac{p}{4} + \frac{p}{4^2} + \dots$$

$$\Rightarrow 3 = \frac{p}{4\left(1 - \frac{1}{4}\right)} \Rightarrow p = 9$$

- For $\frac{x^2}{25} + \frac{y^2}{16} = 1$, find the length of chord whose mid point is $P\left(1, \frac{2}{5}\right)$ 3.
 - $(1) \frac{\sqrt{1681}}{5} \qquad (2) \frac{\sqrt{1481}}{5} \qquad (3) \frac{\sqrt{1781}}{5}$
- (4) $\frac{\sqrt{1691}}{5}$

Ans. **(4)**

Sol. By
$$T = S_1$$

$$\Rightarrow \frac{x}{25} + \frac{y}{16} = \frac{1}{25} + \frac{4}{25} \cdot \frac{1}{16}$$

$$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{4+1}{100}$$

$$\Rightarrow \frac{x}{25} + \frac{y}{40} = \frac{1}{20}$$

$$\Rightarrow 8x + 5y = 10$$

$$\Rightarrow \frac{x^2}{25} + \left(\frac{10 - 8x}{5}\right)^2 \frac{1}{16} = 1$$

$$\Rightarrow \frac{x^2}{25} + \frac{4}{25} \left(\frac{5 - 4x}{16} \right)^2 = 1$$

$$\Rightarrow x^2 + \frac{\left(5 - 4x\right)^2}{4} = 25$$

$$\Rightarrow 4x^2 + (5 - 4x)^2 = 100$$

$$\Rightarrow 20x^2 - 8x - 15 = 0$$

$$x_1 + x_2 = 2$$

$$x_1x_2 = \frac{-15}{4}$$

length of chord = $|x_1 - x_2| \sqrt{1 + m^2}$

$$=\frac{\sqrt{1691}}{5}$$

4. If
$$f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$$
, then find $f'(10)$.

Ans. (202)

Sol.
$$f'(x) = 3x^2 + 2xf'(1) + f'(2)$$

$$f''(x) = 6x + 2f'(1)$$

$$f'''(3) = 6$$

$$f'(1) = -5$$

$$f''(2) = 2$$

$$\Rightarrow$$
 f'(10) = 300 + 20(-5) + 2

= 202

5. Let
$$\int_{0}^{1} \frac{dx}{\sqrt{x+3} + \sqrt{x+1}} = A + B\sqrt{2} + C\sqrt{3}$$
 then the value of $2A + 3B + C$ is

- (1)3
- (2)4
- (3)5
- (4) 6

Ans. (1)

Sol. On rationalising

$$\int_{0}^{1} \frac{(\sqrt{x+3} - \sqrt{x+1})}{2} dx$$

$$= \frac{2}{3.2} \left\{ (x+3)^{3/2} - (x+1)^{3/2} \right\}_{0}^{1}$$

$$= \frac{1}{3} \{8 - 3\sqrt{3} - (2\sqrt{2} - 1)\}$$

$$= \frac{1}{3} \{9 - 3\sqrt{3} - 2\sqrt{2}\}$$

$$= \left(3 - \sqrt{3} - \frac{2\sqrt{2}}{3}\right) : A = 3, B = -\frac{2}{3}, C = -1$$

$$\therefore 2A + 3B + C = 6 - 2 - 1 = 3$$

- **6.** If |z-i| = |z-1| = |z+i|, $z \in \mathbb{C}$, then the numbers of z satisfying the equation are
 - (1) 0
- (2)

- (3)2
- (4) 4

Ans. (2)

Sol. z is equidistant from 1, i, & -i only z = 0 is possible

∴ number of z equal to 1

- 7. If sum of coefficients in $(1-3x+\frac{10x^2}{n})$ and $(1+x^2)$ is A and B respectively then
 - (1) $A^3 = B$
- (2) $A = B^3$
- (3) A = 2B
- (4) A = B

Ans. (2)

Sol. $A = 8^n$

 $B=2^n$

(B) \therefore A = B³

8. Let a_1, a_2, \ldots, a_{10} are 10 observations such that $\sum_{i=1}^{10} a_i = 50$ and $\sum_{i \neq j}^{10} a_i \cdot a_j = 1100$, then their

(1) $\sqrt{5}$

(2) $\sqrt{30}$

(3) $\sqrt{15}$

 $(4) \sqrt{10}$

Ans. (1)

Sol.
$$(a_1 + a_2 + \dots + a_{10})^2 = 50^2$$

 $\Rightarrow \sum a_1^2 + 2 \sum_{i \neq j} a_i a_j = 2500$

standard deviation will be

$$\Rightarrow \sum a_1^2 = 300$$

$$\sigma^2 = \frac{\sum a_i^2}{10} - \left(\frac{\sum a_i}{10}\right)^2$$

$$\Rightarrow \sigma^2 = 5 \Rightarrow \text{S.D} = \sqrt{5}$$

9. If
$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then

Statement-1: f(-x) is inverse of f(x)

Statement-2: f(x + y) = f(x)f(y)

(1) Both are true

(2) Both are false

(3) Only statement 1 is true

(4) Only statement 2 is true

Ans. (1)

Sol.
$$f(x)f(y) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(x+y) & -\sin(x+y) & 0\\ \sin(x+y) & \cos(x-y) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$= f(x + y)$$

$$\therefore f(x) f(-x) = f(0)$$

$$=$$

10. If
$$a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}$$
 and $b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}$ find $a \cdot b^3$

$$(3) - 16$$

(4) 48

Ans. (2)

Sol.
$$a = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left[\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right]}$$

$$= \lim_{x \to 0} \frac{x^4}{x^4 \left[\sqrt{1 + \sqrt{1 + x^4} + \sqrt{2}} \right] \left[\sqrt{1 + x^4} + 1 \right]}$$

$$=\frac{1}{2\sqrt{2}\times 2}=\frac{1}{4\sqrt{2}}$$

$$b = \lim_{x \to 0} \frac{\sin^2 x}{(1 - \cos x)} \left(\sqrt{2} + \sqrt{1 + \cos x} \right)$$

$$=2\times\left(\sqrt{2}+\sqrt{2}\right)=4\sqrt{2}$$

$$\therefore ab^3 = \left(4\sqrt{2}\right)^2 = 32$$

11. If the minimum distance of centre of the circle $x^2 + y^2 - 4x - 16y + 64 = 0$ from any point on the parabola $y^2 = 4x$ is d, find d^2

Ans. (20)

Sol. Normal to parabola is $y = mx - 2m - m^3$

centre (2, 8)
$$\rightarrow$$
 8 = 2m - 2m - m³

$$\Rightarrow$$
 m = -2

$$\therefore$$
 p is $(m^2, -2m) = (4, 4)$

$$\Rightarrow$$
 d² = 4 + 16 = 20

- 12. If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 3(\hat{i} \hat{j} + \hat{k})$, $\vec{a} \times \vec{c} = \vec{b} \& \vec{a} . \vec{c} = 3$ find $\vec{a} . (\vec{c} \times \vec{b} \vec{b} \vec{c})$
 - (1)24
- (2) 24
- (3) 18
- (4) 15

Ans. (1)

Sol. $[\overrightarrow{a} \overrightarrow{c} \overrightarrow{b}] = (\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b} = |\overrightarrow{b}|^2 = 27$

$$\therefore$$
 we need = $27 - 0 - 3 = 24$

- 13. Consider the line L: 4x + 5y = 20. Let two other lines are L_1 and L_2 which trisect the line L and pass through origin, then tangent of angle between lines L_1 and L_2 is
 - (1) $\frac{20}{41}$
- (2) $\frac{30}{41}$
- $(3) \frac{40}{41}$
- (4) $\frac{10}{41}$

Ans. (2)

Sol. Let line L intersect the lines L_1 and L_2 at P and Q

$$P\left(\frac{10}{3}, \frac{4}{3}\right), Q\left(\frac{5}{3}, \frac{8}{3}\right)$$

$$\therefore m_{OA} = \frac{2}{5}$$

$$m_{OQ} = \frac{8}{5}$$

$$\tan\theta = \frac{\left| \frac{8}{5} - \frac{2}{5} \right|}{1 + \frac{16}{25}}$$

$$= \left(\frac{6}{5} \times \frac{25}{41}\right)$$

$$=\frac{30}{41}$$

If $^{n-1}C_r = (k^2 - 8) ^n C_{r+1}$, then the range of 'k' is

$$(1) k \in \left(2\sqrt{2}, 3\right] \qquad (2) k \in \left(2\sqrt{2}, 3\right)$$

$$(2) k \in \left(2\sqrt{2}, 3\right)$$

$$(3) k \in [2, 3)$$

(3)
$$k \in [2, 3)$$
 (4) $k \in (2\sqrt{2}, 8)$

Ans.

 $^{n-1}C_r = (k^2 - 8) \frac{n}{r+1} \cdot ^{n-1}C_r$ Sol.

$$\Rightarrow k^2 - 8 = \frac{r+1}{n}$$

here $r \in [0, n-1]$

$$\Rightarrow$$
 r + 1 \in [1, n]

$$\Rightarrow k^2 - 8 \in \left[\frac{1}{n}, 1\right]$$

$$\Rightarrow k^2 \in \left[8 + \frac{1}{n}, 9\right]$$

$$\Rightarrow$$
 k $\in (2\sqrt{2}, 3]$

If $\alpha x + \beta y + 9 \ln|2x + 3y - 8\lambda| = x + C$ is the solution of (2x + 3y - 2)dx + (4x + 6y - 7)dy = 0, **15.** then $\alpha + \beta + \gamma =$

Ans. **(1)**

Sol. Let 2x + 3y = t

$$\Rightarrow 2 + 3 \frac{dy}{dx} = \frac{dt}{dx}$$

Now
$$(t-2) + (2t-7)\left(\frac{dt}{dx} - 2\right) \times \frac{1}{3} = 0$$

$$\Rightarrow -\frac{(3t-6)}{2t-7} = \frac{dt}{dx} - 2$$

$$\Rightarrow \frac{dt}{dx} = \frac{t-8}{2t-7}$$

$$\Rightarrow \int \frac{2t-7}{t-8} dt = \int dx$$

$$\Rightarrow \int 2 + \frac{9}{t - 8} dt = \int dx$$

$$\Rightarrow 2t + |9\ln|t - 8| = x + C$$

$$\Rightarrow$$
 2(2x + 3y) + 9ln|2x + 3y - 8| = x + C

$$\alpha = 4$$
, $\beta = 6$, $\gamma = 8$

16. $f: N - \{1\} \rightarrow N$ and f(n) = highest prime factor of 'n', then f is

(1) one-one, onto

(2) many-one, onto

(3) many-one, into

(4) one-one, into

Ans. (3)

Sol. '4' is not image of any element \Rightarrow into

 $f(10) = 5 = f(15) \Rightarrow$ many-one

17. If P(X) represent the probability of getting a '6' in the X^{th} roll of a die for the first time. Also

$$a = P(X = 3)$$

$$b = P(X \ge 3)$$

$$c = P\left(\frac{X \ge 6}{x > 3}\right)$$
, then $\frac{b+c}{a} = ?$

Ans. (12)

Sol. $P(X = 3) = \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} = a$

$$P(X \ge 3) = \left(\frac{5}{6}\right)^2 = b$$

$$P\left(\frac{X \ge 6}{X > 3}\right) = \left(\frac{5}{6}\right)^2 = c$$

$$\therefore \frac{b+c}{a} = \frac{2\left(\frac{5}{6}\right)^2}{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}} = 12$$

18. If the angle between two vectors $\vec{a} = \alpha \hat{i} - 4 \hat{j} - \hat{k}$ and $\vec{b} = \alpha \hat{i} + \alpha \hat{j} + 4 \hat{k}$ is acute then find least positive integral value of α .

(1)4

(2)5

(3)6

(4)7

Ans. (2)

Sol. $\overrightarrow{a} \cdot \overrightarrow{b} > 0$

$$\Rightarrow \alpha^2 - 4\alpha - 4 > 0$$

$$\alpha < (2 - 2\sqrt{2}) \text{ or } \alpha > (2 + 2\sqrt{2})$$

19. If $S = \{1, 2, \dots 10\}$ and M = P(S),

If ARB such that $A \cap B \neq \emptyset$ where $A \in M$, $B \in M$

Then

(1) R is reflexive and symmetric

(2) Only symmetric

(3) Only reflexive

(4) Symmetric and transitive

Ans. (2)

Sol.
$$\phi \cap \phi = \phi$$

$$\Rightarrow$$
 $(\phi, \phi) \notin R$

 \Rightarrow not reflexive.

If
$$A \cap B \neq \emptyset$$

$$\Rightarrow$$
 B \cap A \neq ϕ \Rightarrow Symmetric

If
$$A \cap B \neq \emptyset$$
 and $B \cap C \neq \emptyset \Rightarrow A \cap C = \emptyset$

for example $A = \{1, 2\}$

$$B = \{2, 3\}$$

$$C = \{3,4\}$$

20. If four points (0, 0), (1, 0), (0, 1), (2k, 3k) are concyclic, then k is

$$(1)\frac{4}{13}$$

$$(2) \frac{5}{13}$$

(2)
$$\frac{5}{13}$$
 (3) $\frac{7}{13}$

$$(4) \frac{9}{13}$$

(2) Ans.

Sol. Equation of circle is

$$x(x-1) + y(y-1) = 0$$

$$x^2 + y^2 - x - y = 0$$

B(2k, 3k)

$$\Rightarrow 4k^2 + 9k^2 - 2k - 3k = 0$$

$$\Rightarrow 13k^2 = 5k$$

$$\Rightarrow$$
 k = 0, $\frac{5}{13}$

$$\therefore k = \frac{5}{13}$$

If f(x) is differentiable function satisfying $f(x) - f(y) \ge \log \frac{x}{v} + x - y$, then find $\sum_{x=1}^{20} f'\left(\frac{1}{N^2}\right)$ 21.

(2890)Ans.

Sol. Let x > y

$$\lim_{y \to x} \frac{f(x) - f(y)}{x - y} \ge \frac{\log x - \log y}{x - y} + 1 \qquad \frac{f(x) - f(y)}{x - y} \le \frac{\log x - \log y}{x - y} + 1$$

Let
$$x < y$$

$$\frac{f(x) - f(y)}{x - y} \le \frac{\log x - \log y}{x - y} + 1$$

$$f'(x^-) \ge \frac{1}{x} + 1$$

$$f'(x^+) \le \frac{1}{x} + 1$$

 \Rightarrow f'(x⁻) = f'(x⁺) as f(x) is differentiable function

$$f'(x) = \frac{1}{x} + 1$$

$$f'\left(\frac{1}{N^2}\right) = N^2 + 1$$

$$\sum_{N=1}^{20} f'\left(\frac{1}{N^2}\right) = \sum (N^2 + 1) = \frac{20 \times 21 \times 41}{6} + 20 = 2890$$

22. Let
$$\frac{dx}{dt} + ax = 0$$
 and $\frac{dy}{dt} + by = 0$ where $y(0) = 1$, $x(0) = 2$, and $x(t) = y(t)$, then t is

$$(1) \frac{\ln 3}{a-b}$$

$$(2) \frac{\ln 2}{b-a}$$

(1)
$$\frac{\ln 3}{a-b}$$
 (2) $\frac{\ln 2}{b-a}$ (3) $\frac{\ln 2}{a-b}$ (4) $\frac{\ln 3}{b-a}$

$$(4) \frac{\ln 3}{b-a}$$

Ans.

Sol.
$$\frac{dx}{dt} + ax = 0$$

$$\Rightarrow \ln x = -at + c$$

$$x(0) = 2 \Rightarrow c = \ln 2$$

$$\therefore x = 2e^{-at}$$

$$\frac{dy}{dt} + by = 0 \implies y = e^{-bt}$$

$$x(t) = g(t)$$

$$2e^{-at} = e^{-bt}$$

$$\Rightarrow t = \frac{\ln 2}{a - b}$$

If H(a, b) is the orthocentre of $\triangle ABC$ where A(1, 2), B(2,3) & C(3, 1), then find $\frac{36l_1}{l_2}$ if 23.

$$I_1 = \int_a^b x \sin(4x - x^2) dx$$
 and $I_2 = \int_a^b \sin(4x - x^2) dx$

(72) Ans.

Sol. ΔABC is isosceles

 \Rightarrow H lies on angle bisector passing through (3, 1) which is x + y = 4

$$\therefore a + b = 4$$

Now apply (a + b - x) in I_1

$$2I_1 = \int_{a}^{b} 4\sin(4x - x^2) \, dx$$

$$\Rightarrow 2I_1 = 4I_2$$

$$\Rightarrow \frac{I_1}{I_2} = 2$$

$$\therefore \frac{36I_1}{I_2} = 72$$

24.
$$f(x) = \begin{cases} \frac{2^{\frac{1}{|x-|x|}}}{x-|x|}, & x > 3\\ -\frac{a(x^2 - 7x + 12)}{b |x^2 - 7x + 12|}, & x < 3. \text{ Find number of ordered pairs (a, b) so that } f(x) \text{ is continuous} \\ b, & x = 3 \end{cases}$$

at
$$x = 3$$

Sol. LHL = RHL =
$$f(3)$$

$$-\frac{a}{b} = 2^1 = b$$

$$\Rightarrow$$
 b = 2 and a = -4

$$\Rightarrow$$
 (a,b) = (-4,2)

25. Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$
, $B = [B_1 \ B_2 \ B_3]$ where B_1 , B_2 , B_3 are column matrices such that

$$AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AB_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

 α = sum of diagonal elements of B

$$\beta = |B|$$
, then find $|\alpha^3 + \beta^3|$

Sol.
$$A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 1 & -2 & 0 \end{bmatrix}$$

$$\mathbf{B}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{B}_{2} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 2 \end{bmatrix}, \ \mathbf{B}_{3} = \begin{bmatrix} 2 \\ -\frac{5}{2} \\ -1 \end{bmatrix}$$

$$Tr(B) = -\frac{1}{2}$$

$$|B| = -1$$

$$\therefore a = -\frac{1}{2}, b = -1$$

$$|\alpha^3 + \beta^3| = \frac{9}{8} = 1.125$$

- **26.** If cos(2x) a sinx = 2a 7 has a solution for $a \in [p, q]$ and $r = tan9^{\circ} + tan63^{\circ} + tan81^{\circ} + tan27^{\circ}$, then p.q. r = ?
 - (1) $40\sqrt{5}$
- (2) $32\sqrt{5}$
- (3) $30\sqrt{5}$
- $(4) 48\sqrt{5}$

Ans. (4)

Sol.
$$2(\sin^2 x - 4) + a(\sin x + 2) = 0$$

$$2(\sin x - 2) + a = 0$$

$$\Rightarrow$$
 a = 4 – 2 sinx

$$a \in [2, 6]$$

Also,
$$r = \left(\tan 9^\circ + \frac{1}{\tan 9^\circ}\right) + \left(\tan 27^\circ + 1\frac{1}{\tan 27^\circ}\right)$$

$$=\frac{2}{\sin 18^{\circ}} + \frac{2}{\sin 54^{\circ}}$$

$$=\frac{2\times4}{\sqrt{5}-1}+\frac{2\times4}{\sqrt{5}+1}$$

$$=\frac{8\times2\sqrt{5}}{4}=4\sqrt{5}$$

$$\therefore pqr = 48\sqrt{5}$$

5 साल में 3 बार सीकर टॉपर

JEE Advance
496
AIR (Gen)
IIT-DELHI

JEE Advance

133
AIR (Gen)
IIT-BOMBAY

With XII
JEE Mains
185
AIR (Gen)
IIT-KHARAGPUR

Classroom Students Result from Foundation Course Since Two Years